Upstream Contract Services

Emerging Technology Trends in Biologics Development: A Contract Development and Manufacturing Perspective

For a contract development and manufacturing organization (CDMO), process development and manufacturing of recombinant proteins must be linked because of tight timelines driven by client expectations. Those are in turn driven by a need for rapid progression to clinical testing. Early in process development, the choice of raw materials needs to reflect existing supply chain and manufacturing infrastructure, but remain suitable for scaling up to meet future needs. One approach is to establish platform processes for a class of molecules…

The Rise of Biopharmaceutical Outsourcing to Indian CDMOs

India is becoming an increasingly attractive destination for outsourcing biotechnology services by global biopharmaceutical companies. As “Big Pharma” continues on its path of finding ways to lower costs for development and manufacturing of biopharmaceuticals, Indian contract development and manufacturing organizations (CDMOs) are being viewed as capable and beneficial service providers that possess the necessary technical expertise and regulatory-compliant facilities. According to its 11th annual report on biopharmaceutical manufacturing capacity and production, BioPlan Associates ranked India fourth in the world as…

Rapid Development and Scale-Up Through Strategic Partnership: Case Study of an Integrated Approach to Cell-Line and Process Development for Therapeutic Antibodies

Over the past decade, monoclonal antibodies have become mainstream therapeutics for treating a broad range of conditions from autoimmune disorders to cancer. Part of this evolution is increasing time and cost pressure on biopharmaceutical companies to bring new drugs to market 1, 2. Additionally, companies now routinely engineer and screen molecules for developability and manufacturability during discovery before selecting a final candidate molecule. The biosimilar development paradigm also demands significantly more bioanalytical analysis during initial cell-line and process development. Thus,…

Cell Therapy Bioprocessing Technologies and Indicators of Technological Convergence

The cell therapy industry is undergoing a natural evolution from scientific curiosity into a commercially and clinically attractive opportunity (1). This evolution is by no means complete, and growing evidence suggests that its progression is driving significant developments in cell therapy bioprocessing — notably, convergence. Table 1:&#8 194; () Progressively, bioprocessing technologies primarily used in production of noncell-based products are being evaluated for cell therapy bioprocessing applications (2). Consequently, this process of convergence is leading to an increasing proportion of…

Cost-Effectiveness and Robustness Evaluation for Biomanufacturing

As the biotech sector has matured, it has come under increasing economic and regulatory pressures for continuous improvement in both drug development and manufacturing. As a result, assessing the value potential of alternative strategies has become critical to decision-making in areas such as bioprocess and facility design, capacity sourcing, and portfolio selection. Related decisions typically involve large cash expenditures and thus have a direct bearing on the feasibility of business units and whole companies. Figure 1:  () Making such decisions…

A Global Joint Venture Strategy for Biosimilars Development

In April 2013, biopharmaceutical company Pfenex (San Diego, CA) announced a joint venture with biologics manufacturer Stelis Biopharma, Inc. (“Stelis”), earlier known as Agila Biotech, (a wholly owned subsidiary of Strides Arcolab Limited (Bangalore, India) for the commercial development of six biosimilars. The companies will also leverage technology and global development expertise from GE Healthcare Life Sciences (Uppsala, Sweden) and Bio-XCell Malaysia (Nusajaya, Malaysia). Such international, multicompany collaboration strategies have become a growing trend in the highly competitive biosimilars industry.…

Development Strategies for Novel Vaccines for Infectious Diseases

In a vaccine development program, the probability of success at each transition decreases, even though the actual probability of moving from one phase to another can be 50–80% (Figure 1). Many compounds and vaccine candidates are screened out even before they get into preclinical studies. Developers can implement different approaches to reduce product failure risk before a program gets expensive, including Establishing a product development plan (PDP) Identifying and mitigating risk with gap analysis Learning from the mistakes of others…

Profitability in the Biosimilars Market

The biosimilars space offers significant commercial opportunity. About US$60 billion of branded biologic sales will lose patent protection over the next few years, including some of the largest-selling monoclonal antibodies (MAbs). Companies are jostling among themselves, each seeking the best position to exploit that opportunity. Regulators are creating and refining the necessary pathways to success, alliances are being forged, and companies are being acquired. Despite the significant opportunity for biosimilar MAbs, significant risks remain. Perhaps the most significant of those…

Concerns, Collaboration, and Capacity

The BPI Theater is a 50-seat venue that for seven years has been located at the heart of the BioProcess Zone on the exhibition floor of the BIO International Convention. There, BPI provides attendees with four days of live presentations focusing on the latest scientific advances and business trends in biotherapeutic development and manufacturing. On Monday afternoon, 22 April 2013, Patricia Seymour of BioProcess Technology Consultants (BPTC) moderated a roundtable discussion on biosimilar development in the BPI Theater at BIO…

A Risk-Based Life-Cycle Approach to Implementing Disposables for Facility Flexibility

Plastic-based, single-use, disposables has been prevalent in biotech/pharmaceutical manufacturing processes for decades. Examples of such technologies include filters, gaskets, tubing, sampling bags, carboys, and ultrafiltration/diafiltration (UF/DF) capsules. In recent years, single-use technology has made great leaps in broadening the range of options and applications available. Disposable bioprocess containers are now widely used for applications such as media/buffer preparation and storage, bioreactors and cell culture operations, in-process intermediate containers for manufacturing operations, final drug substance/product containers, and so on. Customized solutions…