Information Technology

Managing Collaboration Across the Extended Organization

In an increasingly competitive life-science landscape that includes numerous mergers, acquisitions, and changing business models, the demand for collaboration is increasing at such a pace that it exceeds information technology (IT) capabilities. The need to manage and control this collaboration across the supply chain has become mandatory. That is particularly true for larger organizations with hundreds or thousands of partners that are finding new ways to connect, interact, and conduct business. Individual businesses are forming contractual affiliations that extend beyond…

Analytics for Modern Bioprocess Development

Twelve years ago, about the same time the US Food and Drug Administration was putting the finishing touches on its quality by design (QbD) and process analytical technology (PAT) guidelines, I wrote an article about breakthrough pharmaceutical educational programs. That article included the perspectives from a few members in academia of the future essential skills for pharmaceutical students. At the time, bioinformatics and computerized industrial process modeling were relatively new disciplines, but their importance in future manufacturing was clear. Several…

Analysis By Size and Charge

An early BPI Lab article addressed the power of liquid chromatographic separations for biopharmaceutical laboratory use (1). Such techniques separate biomolecules based on a number of different properties: size, solubility, hydrophobicity/-philicity, binding affinity. The next most powerful means of separation — and thus high-resolution identification — of nucleic acids and proteins/peptides is based primarily on electrostatic properties: electrophoresis. Although it doesn’t really work in a process or preparative setting, it is a fundamental technique in modern biopharmaceutical laboratories, where it…

Advances in Sensor Technology Improve Biopharmaceutical Development

Today’s biomanufacturing operations require constant management of biopharmaceutical process attributes throughout process development and production. Continuous online measurements of pH, dissolved oxygen (DO), oxidation–reduction potential (ORP), and conductivity (Figure 1) allow real-time industrial process monitoring and adjustment. These functions are crucial to process improvement studies and accurate, reliable manufacturing of high-quality products. Figure 1: () “In the pharmaceutical industry, it is extremely valuable to see how an attribute changes with time and correlate that change with parts of the process,”…

Manufacturing Culture

Life sciences company leaders need to put the right people, processes, and technologies in place to create evolutionary cultures. Such cultures would embrace advanced manufacturing process intelligence and reap related business benefits. Since the late 1990s, my software company has helped biomanufacturers improve their process understanding. In that time, we’ve seen regulatory drivers such as quality by design (QbD) and process analytical technology (PAT) guidances call for improved manufacturing process performance through better process understanding and optimization. We define process…

A Framework for Process Knowledge Management

    Process development and manufacturing for biopharmaceuticals are often disjointed activities. Disconnects between groups within an organization can be aggravated by a lack of common terminology and poor data-management practices. Implementing a simple data model based on the ISA-88 standard for batch control can help companies capture process and facility data throughout their product life cycle (1). The first half of this two-part article illustrates how translating a process description to a structured electronic format could transform the bioprocessing…

Enhancing Data Quality with a Partly Controllable System at Shake Flask Scale

    In bioprocess development, small-scale systems are used to identify appropriate cell lines, media, and feeds before applying more expensive, controlled cultivation systems at larger scales. Process development relies on data generated in such uncontrolled small-scale cultivation systems, so comparability is an issue. Shake flasks are commonly used for small-scale culture of mammalian suspensions. Incubators provide a suitable environment with carbon dioxide (CO2) supply and humidity control and ensure sufficient oxygen transfer and homogenization of cell suspension by appropriate…

Informatics Technologies in an Evolving R&D Landscape

    Over the years, bioprocessing companies have leveraged a host of information technology (IT) to help them bring innovative new therapies to market. As the needs of a research and development (R&D) enterprise evolve, however, are such systems and applications a help or a hindrance? On one hand, the increasing sophistication of IT solutions — such as those designed to help users create advanced molecular models or track thousands of compounds through the discovery process — have enabled new…

Approaches to Debottlenecking and Process Optimization

    Two major challenges associated with optimizing biomanufacturing operations remain unresolved. The first is variability: how to understand and improve manufacturing with significant variation in process times throughout all unit operations. The second is complexity: modern biomanufacturing facilities are complex and interconnected, with piping segments, transfer panels, and valve arrays, as well as water for injection (WFI) and other shared resource constraints. That complexity is becoming even greater with the need for process standardization and processing of higher (and…

Manufacturing Process Automation

When you think of futuristic manufacturing facilities and processes, robots might come to mind in a science fiction setting where humans are absent and production lines are directed by computerized drones that perform tasks we can’t even imagine today. As the pace of technology shuttles us swiftly into the real future, however, life-science manufacturers need to pause to examine the purpose of automation and how we can best steer its course. In bioprocess manufacturing and other industries, technology is growing…