Cell Therapies

Streamlining Cell Therapy Manufacture

    The cell therapy industry (CTI) is no longer a cottage industry; it is a distinct and sustainable component of the global healthcare sector (1). Today, CTI prospects are strong, with annual revenues exceeding US$1 billion/year, supported by improving investor sentiment and public support (1,–3). The next phase of CTI growth — toward a multibillion-dollar global industry — will depend on the biomanufacturing community innovating to meet growing market demands and providing products at affordable costs to healthcare payers.…

Small–Batch-Size Production

    After coexisting as close cousins in the world of life sciences, the bioprocessing and cell therapy industries now find themselves as possible allies in the pursuit of solutions to small–batch-size production technology. As cell culture titers continue to increase and biotherapies become more “personalized,” pressure is increasing on the bioprocessing industry to find more cost-effective and flexible technologies for producing smaller batch sizes than before. At the same time, the cell therapy industry (renowned for its small–batch-size production)…

“Hard Cell”: Potency Testing for Cellular Therapy Products

Potency testing is defined in 21 CFR Part 600.3(s) as “the specific ability or capacity of the product, as indicated by appropriate laboratory tests or by adequately controlled clinical data obtained through the administration of the product in the manner intended, to effect a given result” (1). Potency measurement is especially important for complex products such as cellular therapies (CTs). It is considered an essential aspect of the quality-control system for a CT drug substance and drug product. It is…

Quality Control During Manufacture of a Stem Cell Therapeutic

Development and manufacturing of a therapeutic stem cell product requires extensive quality control (QC) to ensure the identity, quality, and safety of the cells. Here, we describe our QC pipeline to optimize the manufacturing of our MultiStem adherent stem cell product, which is in clinical trial testing for stroke, acute myocardial infarction, inflammatory bowel disease, graft versus host disease, and solid organ transplantation. Screening for growth, marker expression, immunosuppression, and multipotent differentiation — in combination with “-omics” screening for gene…

Top 10 Regenerative Medicine Stories of 2011

    Geron Ends Stem Cell Programs in November: Big hope for a spinal cord injury trial, big loss for a field — the most discussed news of the year. Despite the company’s official comment citing a “purely business decision,” many professionals think that a “lack of impressive preliminary results” also played a role. The company is now seeking a partner to take over that trial. The effect on the cell therapy industry remains to be seen — but for…

Transfer of Hepatic Progenitor Stem Cell Culture Process from multiple-tray stacks to the Xpansion Multiplate Bioreactor.

Scale-up a stem cell process may be challenging: small variations in physicochemical parameters (surface characteristics, pH and dissolved oxygen) can heavily impact stem cell growth and behavior. The Integrity® Xpansion™ multiplate bioreactors have been designed to enable an easy transfer from multiple-tray stacks process by offering the same cell growth environment: stacked hydrophylized polystyrene plates in a compact and closed system (from 10 to 200 plates per bioreactor equivalent respectively to 6120cm² and 122400cm²). As there is no headspace between…

Recommendations for Cell Banks Used in GXP Assays

Cells and cell-derived reagents form the basis of an operationally challenging class of test methods used in execution of product potency testing (stability and lot release), assessments of pharmacokinetic/ pharmacodynamic (PK/PD) profiles, detection of antidrug antibodies (ADAs) or neutralizing antibodies (NAB), and characterization and comparability testing of biopharmaceutical products. Frequently, cell-based assays provide the only measurement of the tertiary/quaternary structure of each batch of product at the time of lot release and during stability testing to assist in determining product…

Toward Defined Culture Conditions for Pluripotent Stem Cells, Part 2

    At the UK National Stem Cell Network ‘s annual meeting in York, UK on 31 March 2011, a workshop organized by STEMCELL Technologies workshop addressed defined media for human stem cell culture. As illustrated in Part 1 (October 2011), it is critical to understand the pathways that maintain genetic stability during hES self-renewal, which is a prerequisite for all clinical applications. Because physiological DNA damage can take place during normal cellular proliferation, and accumulation of unrepaired DNA could…

Toward Defined Culture Conditions for Pluripotent Stem Cells, Part 1

    On 31 March 2011, ~50 delegates attended a workshop organized by STEMCELL Technologies on implications of standard defined culture conditions for embryonic and induced-pluripotent human stem cells as part of the annual meeting of the UK National Stem Cell Network in York, UK. Researchers from both academia and industry need to develop a better understanding of those implications. Our company wanted to give them a better appreciation of key challenges facing ancillary material suppliers who manufacture standard defined…

Optimizing Cryopreservation for Therapeutic Cells

    Biopreservation suppresses degradation and enables postpreservation recovery of structure, viability, and function. Although there are several biopreservation techniques (indicated in “Biopreservation Methods” box), most laboratories use either standard cryopreservation protocols (the far majority) or vitrification (much more limited in broad systems application) when freezing cells for research and clinical applications. Isopropanol freezing containers such as the Mr. Frosty device from Nalgene Labware have made cryopreservation easier in many applications, and controlled-rate freezers allow users to program and manipulate…