Chromatography

MAb Contaminant Removal with a Multimodal Anion Exchanger

Monoclonal antibodies (MAbs) constitute ∼30% of the biopharmaceutical products currently under development (1). An increasing demand for MAbs during the past decade has led to intense development of high-expression cell cultures (2). Today, it is possible to see titers of 4–5 g/L, and expression levels as high as 15 g/L and greater have been reported. As a consequence, demand has increased for more efficient downstream processes. That demand, combined with its potential for reducing time-to-market, has increased interest in the…

Quantifying Trends Toward Alternatives to Protein A

Problems associated with affinity purification in antibody production continue to increase as upstream cell culture expression levels improve. As a result, many vendors and users in the biopharmaceutical industry are working to identify alternative technologies that can replace tried-and-true column chromatography. In the fifth annual report and survey by BioPlan Associates, 434 global respondents pointed to bottlenecks created by downstream processes as one of their most serious manufacturing problems today (1). Amost two-thirds (63.8%) said their facility is experiencing some…

The Emerging Generation of Chromatography Tools for Virus Purification

Chromatography media and methods have evolved continuously since their introduction a half century ago. Traditional methods use columns packed with porous particles. They still dominate chromatography applications in the field of virus purification, but the past 20 years have witnessed the ascendance of alternative supports, namely membranes and monoliths. These newer media exploit the familiar surface chemistries — ion exchange, hydrophobic interaction, and affinity — but they use unique architectures that offer compelling performance features. The Architecture of Chromatography Media…

How to Improve Your Implementation of Two-Dimensional Preparative HPLC

The biologics and natural product industries rely heavily on separation technology. Sample analyses are undertaken on the analytical scale, and isolation and purification are undertaken at the preparative scale. Key target components are often isolated to provide standard reference materials for future product quality assurance testing. These products are often very complex mixtures, requiring separation systems to have a high peak capacity for both analytical and preparative scale separations. A technique gaining popularity among companies that require the isolation of…

Modeling Flow Distribution in Large-Scale Chromatographic Columns with Computational Fluid Dynamics

Column chromatography remains a key unit operation in downstream processing of biopharmaceuticals. For most commercial processes, two to three chromatography steps are used to remove process-and product-related proteins, DNA and adventitious agents. As the biopharmaceutical industry has increased its product offerings and related demands, downstream processes have fast become a bottleneck (1, 2). Many commercial and clinical processes include a number of cycles on one or more chromatography steps to process the harvest from a single production batch. PRODUCT FOCUS:…

Proactive Debottlenecking

It wasn’t so long ago that people in the biotherapeutics industry talked about a “capacity bottleneck” to describe the difficulty faced by bioprocessors as their many products moved forth through development to require production at larger and larger scales (1). Expression technologies at the time were making proteins at levels suggesting that huge amounts of manufacturing capacity would be needed soon. Just after the turn of the century, product titers (in terms of protein present per liter of culture broth/supernatant)…

Multicolumn Chromatography

Downstream processing is a sequence of unit process operations that purify biopharmaceuticals and prepare them primarily for bulk formulation (Figure 1). Typically, a large volume (hundreds to thousands of liters containing kilograms of therapeutic protein) is delivered from an upstream fermentation or cell culture process — and this ends up as a small volume (a few liters) of purified concentrate product after processing. Figure 1: () For many years, biopharmaceutical manufacturers have been working to increase capacity, address upstream production…

Austria Welcomes BioProcessors

When it comes to agriculture, the people of Austria are among the most dead-set against so-called “genetically modified organisms” of any population in Europe (1). But as is so often the case elsewhere, their attitude toward biotechnology used in medicine is much more friendly. This may have to do with the country’s traditional strength in environmental biotech (ranging from wastewater treatment and organic waste composting to anaerobic digestion for biogas generation) and also food biotechnology. That is the suggestion of…