Pre-Formulation

Development of a High-Throughput Formulation Screening Platform for Monoclonal Antibodies

The goal of formulation development for therapeutic proteins is to find conditions under which a protein remains stable during storage, transport, and delivery to patients. Both chemical and physical stability must be considered. Chemical stability is related to the rates of chemical modification to a protein molecule such as deamidation of aspargine residues and oxidation of methionine residues (1, 2). Particularly important to control if they affect biological function, those modifications could also lead to changes in conformation or half-life…

Evaluation of a Variable-Pathlength Spectrophotometer: A Comparable Instrument for Determining Protein Concentration

Protein concentrations in bioprocessing are determined by multiplying the measured absorbance of UV light as it passes through a sample by the protein extinction coefficient. Conventional spectrophotometer measurements are based on a fixed pathlength depending on the cuvette used to hold the sample (typically 10 mm). Only a small portion of the UV curve is linear at that pathlength. As a result, conventional spectrophotometers have a limited linear range and are unable to measure a large range of protein concentrations…

Highly Concentrated Protein Formulations: Finding Solutions for the Next Generation of Parenteral Biologics

Therapeutic protein formulation is no easy task. Biological drugs may be destined for prefilled syringes or glass vials, or they may be made into lyophilized powders that will be reconstituted in a clinical setting. No matter what their final state will be, recombinant proteins must remain potent and efficacious during storage. In recent years, pharmaceutical companies have turned increasingly to high-concentration protein formulations. Such drug formulations can offer patients the convenience of self-injection — instead of a trip to the…

Development of Protein Capsular Matrix Vaccine Platform Technology

Polysaccharide vaccines account for about 30% of the total >$20-billion/year vaccine market. Despite efficacious vaccines in the field, diseases such as invasive Streptococcus pneumoniae and typhoid fever persist. Development of multivalent polysaccharide conjugate vaccines requires complex chemistries and multiple, expensive good manufacturing practice (GMP) process steps. Matrivax Research and Development Corporation is developing a protein capsular matrix vaccine (PCMV) technology that simplifies synthesis of polysaccharide vaccines with fewer process steps than are required by typical conjugation vaccine processes. Polysaccharide Vaccine…

“Transformation By Infection”

Every bioprocess begins with an expression system, and every expression system begins with DNA transfection. Derived from transformation and infection, the word paradoxically has come to be applied mainly to nonviral methods of genetically engineering cells; viral-vector–mediated DNA transfer is often called transduction. There are chemical, particulate, physical/mechanical, and viral means of getting new genetic material into a cell, and that DNA may take a number of different forms. Even the cloning method (pictured right) using a microscopic needle to…

Drug Products for Biological Medicines

Traditionally, the CaSSS CMC Strategy Forum meetings have provided a scientific focus on the development of biotech drug substances and their manufacture and characterization, leaving the development of drug product formulation and filling, understanding primary containers, and considering novel delivery systems somewhat out of scope. Over recent years, however, the importance of investing more science and technology into drug product development has become evident as different product types, higher protein concentrations, and doses and requirements for improved delivery of biological…

Tunable Half-Life Technology

While a constantly developing market puts increasing pressure on pharmaceutical companies to provide advanced and personalized therapies, the industry is investing heavily in the development of targeted biologics. The aim is often to take new therapeutics through clinical trials and to market as quickly as possible and to develop more novel, tailored drugs. One common challenge for many biologics is their short plasma half-life. That often leads to reduced bioavailability, meaning that an administered drug will clear from a patient’s…

Preformulation Development of a Recombinant Targeted Secretion Inhibitor

Our company carried out a preformulation study on a recombinant targeted secretion inhibitor (TSI) with contract research organization (CRO) Avacta Analytical. In this protein, the binding domain of botulinum toxin is replaced to broaden the toxin’s therapeutic potential and allow drug development to be targeted towards a specific disease. In our study, we took advantage of the high-throughput, microvolume protein analysis of Avacta’s Optim 1000 fluorescence and light-scattering instrument (which is distributed in the United States by Pall Corporation). It…

A High-Yielding, CHO-K1–Based Transient Transfection System

Biotherapeutics have emerged as effective treatments for many diseases. It’s estimated that every year hundreds of new biotherapeutic candidates enter development (1). Stable transfection of host cells to establish high-producing cell lines is the approved method for generating clinical-grade recombinant biologics. However, biotechnology companies needing to speed up their developmental timelines are increasingly relying on material generated using transient transfection (1, 2). Unlike stable gene expression (SGE) that requires several months of laboratory and process work, transient gene expression (TGE)…

Legacies in Bioprocessing

Bioprocessing is full of legacies. Our remote ancestors discovered fermentation: microbial magic that transformed fruit to wine and grain to beer. Building on the work of Edward Jenner and others, Edward Ballard systematically reinfected cattle to make vaccines. Louis Pasteur revolutionized both fermentation and vaccination by showing that different microbes caused fermentation and spoilage (saving wine and beer production from disastrous batch contamination), establishing the germ theory of disease, and using that knowledge to develop new vaccines against endemic infections.…