Downstream Development

Modeling Perfusion Processes in Biopharmaceutical Production

    Perfusion processes are considered more difficult to model than batch-based fermentation processes because up to a third of a perfusion-based campaign is spent outside “steady-state” production mode. Variabilities in cell density, titer, and harvest rate (HR) during ramp-up necessitate planning and explicit modeling of variabilities in these processes and their subsequent downstream operations. Longer continuous fermentation times require more rigorous attention to risk than do batch-based systems. A flexible purification platform must respond to changing fermentation conditions. Here…

Scale-Up of a Plasmid DNA Purification Process

    RecipharmCobra Biologics, Keele (previously Cobra Biomanufacturing Plc) has been producing plasmid DNA for clinical trials for more than 10 years and has an approved site under the EU clinical trials directive. During this period, the company has produced more than 40 plasmids (ranging from 500 mg to 5 g) for 25 customers in Europe and the United States. These plasmids have been used for gene therapy and vaccines as well as to produce viral vectors. RecipharmCobra has developed…

Monoliths Open the Door to Key Growth Sectors

    The enabling value of monoliths was strongly in evidence at the 4th International Monolith Symposium, held 29 May – 2 June in the Adriatic resort city of Portoroz, Slovenia. Forty-seven oral presentations and 34 posters highlighted important advances in vaccines, gene therapy, phage therapy for infectious disease, and monoclonal antibodies, as well as continuing advances in the performance of monoliths themselves. As these fields advance in parallel, it becomes increasingly apparent that monoliths offer industrial capabilities substantially beyond…

PEGylating Peptides (and Proteins)

Peptides should be promising drug candidates. But their small size makes delivery difficult and gives them an extremely short in vivo half-life. They are often cleared by the kidneys or reticuloendothelial system only minutes after being administered, and they are susceptible to degradation by proteolytic enzymes. These problems could be solved by linking them to polyethylene glycol (PEG). Repeating chains of ethylene oxide (CH2CH2O), PEG molecules can be long or short and straight or branched. PEG groups are linked to…

Industrializing Stem Cell Production

Stem cells have potential as a readily available, consistent source of many differentiated cell types. This unique property can be leveraged both for therapeutic purposes and for facilitating and improving a number of drug discovery and development processes. Large-scale, “industrialized” production of human stem cells in tightly controlled conditions will be required to deliver the quantity and quality of cells needed to support clinical trials and drug discovery development activities (Figure 1). Achieving this level of production while meeting rigorous…

Rapid and Scalable Microplate Development of a Two-Step Purification Process

    High-throughput screening and process development methods are becoming more widely used in the biopharmaceutical industry. Recent development of high-expression (high–target-titer) recombinant culture methods has enhanced the need to also develop more effective separation products, methods, and processes (1). Part of the solution would be chromatographic resins offering higher capacities and flow rates.       However, developing an optimized purification process that involves several chromatographic steps can consume significant time and samples. In addition, a purification process developed…

Improving IEX Throughput and Performance with Differentiated Chromatography Sorbents

    Optimized upstream processing and high-productivity cell culture increase not only target protein titers, but also impurity and contaminant concentrations to be removed from large volumes of feedstock. Simultaneously, biopharmaceutical drug production is increasingly driven by manufacturing cost reduction. These facts together increase the pressure on downstream processing and create an urgent need for more productive and streamlined chromatography operations. Key parameters to consider for enhanced process economics in chromatography are higher protein binding capacities at high flow rates…

Are “Land Mines” Hiding in Your Supplier Records?

    A growing trend in US Food and Drug Administration (FDA) warning letters has been citations for “no justified rationale.” Since 2004, warning letters taking companies to task for poorly documented decision-making and risk-assessment practices has more than doubled — from two in 2004 to four in 2008 and five in 2009. These citations are always in relationship to risk-based decisions: sampling (what, how often, and how much), nonconformances and corrective/preventative actions (when is “root cause” actual root cause,…

How Pore and Fibrous Interstice Structure Influence Filter Performance

    A common objective in pharmaceutical processing is the removal of solids from fluid suspensions through filtration. The usual purpose is the removal of the solid particles to a specified extent, within a given time interval, at the largest possible throughput. Attainment of those goals is managed by proper selection of filtration conditions: principally an adequate effective filtration area (EFA) as defined by filter porosity and a proper rate of flow as regulated by applied differential pressure (ΔP) over…

Process Development’s Impact on Cost of Goods Manufactured (COGM)

    Manufacturing throughput (the amount of material a plant can produce per year) is affected by process yield and plant run rate. The higher they are, the more a plant can produce per year, requiring fewer lots to meet annual demand. Although a process development team obviously determines the process yield, the team also determines the impact on the run rate of duration and potential implementation complexity of the entire train of unit operations. Thus, an optimized process maximizes…