Downstream Development

A Decade of Product Development

    In 2004, the United States Food and Drug Administration (FDA) transferred regulation of many highly purified, “well-characterized” biopharmaceutical proteins from the Center for Biologics Evaluation and Research (CBER) to the Center for Drug Evaluation and Research (CDER), which until then had primarily regulated only synthetic, small-molecule drugs and chemical substances. The most novel/complex and the less-characterized biologics remained within CBER’s jurisdiction. This change complicated BPI’s mission somewhat. When the magazine was founded, we responded to questions from advertisers…

A Decade of Production

Single-use technology has arguably been the biggest “story” of the past 10 years in bioprocessing. And for many people, implementation of disposable elements began soon after the turn of the century with a bioreactor (1, 2), first developed by Wave Biotech in 1996, now a mainstay of many upstream process development laboratories and sold by GE Healthcare. BPI identified the significance of such technologies early on, making them the subject of a supplement in its second year. By the fourth…

Approaches to Debottlenecking and Process Optimization

    Two major challenges associated with optimizing biomanufacturing operations remain unresolved. The first is variability: how to understand and improve manufacturing with significant variation in process times throughout all unit operations. The second is complexity: modern biomanufacturing facilities are complex and interconnected, with piping segments, transfer panels, and valve arrays, as well as water for injection (WFI) and other shared resource constraints. That complexity is becoming even greater with the need for process standardization and processing of higher (and…

Large-Scale, Single-Use Depth Filtration Systems

    Clarifying cell culture broth is the first downstream unit operation in an elaborate sequence of steps required to purify a biological therapeutic. A combination of centrifugation, depth filtration, or tangential-flow filtration (TFF) is used for that operation. The availability of largescale, single-use, depth filtration technology in the recent years, however, has given process developers the capability to improve and simplify downstream processes.   Clarification of Cell Culture Streams   The main purpose of clarification is to efficiently separate…

An Emerging Answer to the Downstream Bottleneck

    Biotechnology companies have invested billions of US dollars in new manufacturing infrastructure, expanding the industry’s total mammalian cell culture production capacity from 670,000 L in 2002 to 2,550,000 L in 2010 (Figure 1) (1). This capacity expansion is estimated to have cost the industry about $20 billion (Figure 2) (1). Figure 1: Macroporous structure of Natrix chromatography media (see ()   Figure 1: ()   Figure 2: ()   That production capacity (and the investment it represents) is…

Key Downstream Problems Decline While Industry Continues to Demand New Technologies

Downstream problems for biomanufacturers finally appear to be lessening. Over the past six years, demand for better purification has topped the list of biomanufacturing areas in need of improvement. This year, however, it appears that purification woes — though still a hot topic — are cooling off. After seven years of measuring the impact on capacity of specific biomanufacturing operations, preliminary data from BioPlan Associates’ ninth annual survey shows that activities associated with both optimizing internal downstream processes (DSPs) and…

Streamlining Cell Therapy Manufacture

    The cell therapy industry (CTI) is no longer a cottage industry; it is a distinct and sustainable component of the global healthcare sector (1). Today, CTI prospects are strong, with annual revenues exceeding US$1 billion/year, supported by improving investor sentiment and public support (1,–3). The next phase of CTI growth — toward a multibillion-dollar global industry — will depend on the biomanufacturing community innovating to meet growing market demands and providing products at affordable costs to healthcare payers.…

Revisiting Protein A Chromatography

Due to the molecular complexity of monoclonal antibodies (MAbs) and potential impurities in cell culture media before purification (host-cell proteins, DNA, media components) (1), subsequent downstream operations must consistently and reproducibly purify products to ensure safety and efficacy. The latest member of GE Healthcare’s MabSelect family is called MabSelect SuRe LX (2). As Table 1 shows, it has been developed using the same highly cross-linked agarose base matrix and protein A ligand as for other MAb affinity resins (Table 1).…

Production of CGMP-Grade Lentiviral Vectors

Lentiviral vectors are important tools for gene transfer because of their ability to transduce a number of cell types without the need for host cells to be dividing (1, 2). As a result, investigators are using them as gene delivery vehicles in clinical applications (3,4,5,6). Although these vectors are used routinely in many research laboratories, large-scale production using current good manufacturing practice (CGMP) methods comes with a set of challenges that must be considered as more clinical trials using lentiviral…

Shifting the Bioprocess Paradigm

    The need for transformation is a powerful driving force in the biopharmaceutical industry. Opinions and predictions about the best way forward are plentiful. As drug developers seek to enhance productivity, reduce costs, and improve their return on investment in research and development, new ways of doing business are explored, evaluated, and acted upon — with varying degrees of success. Faced with intense pressure to evolve, the biopharmaceutical industry is smart to leverage approaches that have driven success in…