January 2014

Innovation in Biopharmaceutical Manufacture

The following is a report from a workshop on innovation in biopharmaceutical manufacturing held at the Annual bioProcessUK Conference in Bristol on 29 November 2012. The aim of the workshop was to access the experience of practitioners in the United Kingdom so as to understand better the challenges and opportunities for innovation in this sector. The workshop addressed the drivers that influence the implementation of process improvements and novel technologies in biopharmaceutical manufacture from the perspective of both manufacturers and…

Optimizing for the Future

The 2013 biennial meeting of the European Society for Animal Cell Technology (ESACT) was in Lille, France this past June. While there, BPI editorial advisor Miriam Monge (vice president of Biopharm Services Ltd.) interviewed ESACT executive committee member Hitto Kaufmann, PhD (vice president of biopharmaceutical process sciences for Boehringer Ingelheim). They talked about some scientific developments being discussed at this year’s ESACT conference as well as Boehringer Ingelheim’s recent announcement about setting up in China and Kaufmann’s own thoughts on…

Analysis By Size and Charge

An early BPI Lab article addressed the power of liquid chromatographic separations for biopharmaceutical laboratory use (1). Such techniques separate biomolecules based on a number of different properties: size, solubility, hydrophobicity/-philicity, binding affinity. The next most powerful means of separation — and thus high-resolution identification — of nucleic acids and proteins/peptides is based primarily on electrostatic properties: electrophoresis. Although it doesn’t really work in a process or preparative setting, it is a fundamental technique in modern biopharmaceutical laboratories, where it…

Assay Acceptance Criteria for Multiwell-Plate–Based Biological Potency Assays

For most biopharmaceuticals, potency is assessed in a bioassay by comparing dose–response curves of the test material and a reference standard. As with all analytical techniques, such assays require criteria by which their execution can be judged objectively to be valid, regardless of whether the desired or expected result is obtained for the test sample. PRODUCT FOCUS: BIOLOGICSPROCESSFOCUS: R&D, QCWHO SHOULD READ: PRODUCT AND PROCESS DEVELOPMENT, ANALYTICAL, QCKEYWORDS: IMMUNOASSAYS, POTENCY ASSAYS, PRODUCT RELEASE, REFERENCE STANDARDS, CONTROL SAMPLES, SAMPLE ACCEPTANCELEVEL: ADVANCED…

Mathematical Model for Production of Recombinant Antibody 14D9 By Nicotiana tabacum Cell Suspension Batch Culture

Transgenic plants are increasingly considered a competing system for producing high-value recombinant proteins for biomedical and industrial purposes at affordable costs (1). Researchers have shown that molecular farming (or biopharming) is a secure technology that is capable of rendering valuable recombinant proteins free of toxins and animal pathogens in a relatively short time (2,3,4,5,6). Scientists have also demonstrated that most recombinant antibodies produced in plants maintain their functional properties (substantial bioequivalence) as well as do those produced in mammalian cell…

Accounting for the Donnan Effect in Diafiltration Optimization for High-Concentration UFDF Applications

The biopharmaceutical industry is targeting high-concentration protein formulations to enable subcutaneous administrations. Such administration can provide better patient convenience than intravenous administration. One challenge associated with high-concentration formulations is increased electrostatic interaction between proteins and excipients. That is a result of increased protein-charge density at high protein concentrations. Such interactions can create an offset between excipient levels in final products and diafiltration buffers in ultrafiltration processes. The effect of such electrostatic interactions in a membrane process is known as the…

Design of Experiments for Fed-Batch Process Development in Shaken Cultures

When designing a recombinant protein production process, a high number of parallel cultivations must be carried out. That task is typically performed using batch cultures in shake flasks or microwell plates, in which fermentation conditions are not monitored. To overcome that limitation, we combined the SensorDish Reader and Shake Flask Reader systems (from PreSens) with an enzymatic glucose delivery system (EnBase technology from BioSilta Oy) for Escherichia coli cultivations. Our objective was to determine whether SensorDish reader cultures would yield…

Outsourcing Facility Safety for Biomanufacturing

As the life-science industry increasingly outsources noncore functions, some companies are finding that managing the expanding web of safety and environmental requirements associated with various functions is, in turn, growing vastly more complex. As multiple third parties handle numerous noncore activities, the risk — and headaches — of monitoring them effectively is a growing challenge by any standard. At first glance, the lowest-risk solution for many organizations may seem to be managing associated safety programs with in-house personnel and programs.…

From the Editor

      Happy 2014! Here is how the new year is shaping up for us so far. Our rotating editorial themes will remain much the same — but our manufacturing theme now shares the spotlight with increased visibility of analytical discussions. Our senior technical editor, Cheryl Scott, has highlighted specific methods in each issue of 2013 and will continue that throughout this year as well. For a list of her 2014 topics, take a look at our editorial calendar…