January 2012

Ten Years of Upstream Production

Disposables: Single-use technology has arguably been the biggest “story” of the past 10 years in bioprocessing. And for many people, implementation of disposable elements began soon after the turn of the century with a Wave bioreactor (1,2), first developed by Wave Biotech in 1996, now a mainstay of many an upstream process development laboratory and sold by GE Healthcare. BPI identified the significance of such technologies early on, making them the subject of a supplement in its second year. By…

Manufacturing Process Automation

When you think of futuristic manufacturing facilities and processes, robots might come to mind in a science fiction setting where humans are absent and production lines are directed by computerized drones that perform tasks we can’t even imagine today. As the pace of technology shuttles us swiftly into the real future, however, life-science manufacturers need to pause to examine the purpose of automation and how we can best steer its course. In bioprocess manufacturing and other industries, technology is growing…

Development of a Plant-Made Pharmaceutical Production Platform

Since the late 1980s, studies have shown that plants can manufacture functional transgenic pharmaceutical compounds. Advantages attributed to plant-made pharmaceutical (PMP) approaches are compelling, and PMP production continues to attract interest from investors and the biopharmaceutical industry (Table 1). Proposed PMP benefits include proven scalability, high production capacity, limited exposure to human or animal pathogens, lower capital expenditures (CapEx), and decreased operating costs. Those putative advantages have proven to be significant business forces driving continued investor support for PMP ventures.…

Recommendations for Cell Banks Used in GXP Assays

Cells and cell-derived reagents form the basis of an operationally challenging class of test methods used in execution of product potency testing (stability and lot release), assessments of pharmacokinetic/ pharmacodynamic (PK/PD) profiles, detection of antidrug antibodies (ADAs) or neutralizing antibodies (NAB), and characterization and comparability testing of biopharmaceutical products. Frequently, cell-based assays provide the only measurement of the tertiary/quaternary structure of each batch of product at the time of lot release and during stability testing to assist in determining product…

Metabolic Process Engineering

Metabolic process engineering (MPE) was developed at Bristol-Myers Squibb Company as a tool to effectively control and optimize industrial cell culture processes used for production of biological drugs. A fundamental need was identified to introduce manipulations to the metabolism of production cell lines without genetic engineering. Optimization goals for production cell line performance include, for example, volumetric productivity, control of product quality attributes and by-product formation, and improved process scalability. With MPE, we could achieve targeted changes to cellular metabolism…

Noninvasive Optical Sensor Technology in Shake Flasks

In process development, appropriate scaling is important to achieve acceptable product quality without compromising titer (1). Scale-down approaches involve matching the oxygen transfer coefficient (kLa) value, impeller tip speed, power per unit volume, or mixing time to those of a bioreactor (2). Bench-top bioreactors are typically used in bioprocess engineering as scale-down models of commercial units in fermentation and cell culture because of their similarity in geometry (H/D ratio) and mechanical properties (agitation type and sparging). By contrast, shaking culture…

Rapid Production of Functional Proteins of a Combinatorial IgG Library in CHO Cells

Recombinant DNA (rDNA) technologies provide a wide range of tools for producing a broad array of recombinant proteins. Since the early 1970s, the biotechnology industry has harnessed those tools — together with genetic engineering and genomics — for developing new classes of innovative and effective therapeutic molecules. The therapeutic recombinant protein market segment now represents the core of the medical biotechnology industry, with hundreds of companies involved in discovery, development, and marketing. Although recombinant technologies are extremely powerful tools, significant…

Global Marketplace

Disposable Bioreactor Product: UniVessel SU controller Applications: R&D and process laboratory-scale cell culture Features: UniVessel SU bioreactors work with most Sartorius Stedim BIOSTAT benchtop controllers as well as those for conventional, stirred-tank glass bioreactors. The system includes disposable SENSOLUX sensor patches for optical noninvasive pH and dissolved oxygen (DO) measurement. It is applicable to small-scale protein expression, media, and process optimization studies. Contact Sartorius Stedim Biotech SA www.sartorius-stedim.com GMP-Grade Nutrient Product: CGMP-grade hyaluronic acid Applications: Cell culture, drug delivery, and…

Make Innovation Sourcing a Business Strategy

A recent study published by CAPS Research (the research arm of the Institute of Supply Management), underscores the importance of organizations adopting external innovation rather than relying solely on their internal research and development (R&D) efforts. Some companies set goals to increase revenues by adopting external innovation. Procter & Gamble, for instance, wanted to attain 50% of its revenues through external innovations — that is, licensing technologies — over five years (1). A joint project from CAPS Research with Western…

Transfer of Hepatic Progenitor Stem Cell Culture Process from multiple-tray stacks to the Xpansion Multiplate Bioreactor.

Scale-up a stem cell process may be challenging: small variations in physicochemical parameters (surface characteristics, pH and dissolved oxygen) can heavily impact stem cell growth and behavior. The Integrity® Xpansion™ multiplate bioreactors have been designed to enable an easy transfer from multiple-tray stacks process by offering the same cell growth environment: stacked hydrophylized polystyrene plates in a compact and closed system (from 10 to 200 plates per bioreactor equivalent respectively to 6120cm² and 122400cm²). As there is no headspace between…