Author Archives: Cheryl Scott

Robots in the Laboratory

Whether cell-based or molecular biology focused, most assays performed in biopharmaceutical laboratories involve liquid solutions. Increasingly, automated liquid handlers (laboratory robotics) are demonstrating utility in these labs, especially for high-throughput screening and optimization of cell culture media, chromatography conditions, formulations, and so on. Some experts say that screening 100,000 samples/day will soon become routine. But the robots haven’t condemned all manual pipettes to the trash heap — far from it. With multichannel and electronic pipettes improving throughput and reproducibility of…

Cellular Communications

Like spectroscopy, as discussed in BPI Lab last month (1), cell signaling is not a laboratory technique but rather an area of scientific study. The environment of living cells — whether prokaryotic or eukaryotic, in vitro or in vivo — comprises not only water, nutrients, waste products, and metabolites, but also molecules released by other cells in response to intracellular events such as microbial infection and disease state or environmental factors such as temperature, osmolality, and pH. Receptor proteins on…

Enlightening Results

Separating spectroscopy from spectrometry is not as straightforward as it might seem. Spectroscopy is the science of the interactions between matter and radiated energy, and spectrometry is the technology that applies that science (1). The former generates no results on its own. It is concerned with spectra produced when matter interacts with or emits electromagnetic radiation, including all methods of producing and analyzing light spectra using spectroscopes, spectrographs, spectrometers, and spectrophotometers. The distinction should come from the meanings of the…

“Transformation By Infection”

Every bioprocess begins with an expression system, and every expression system begins with DNA transfection. Derived from transformation and infection, the word paradoxically has come to be applied mainly to nonviral methods of genetically engineering cells; viral-vector–mediated DNA transfer is often called transduction. There are chemical, particulate, physical/mechanical, and viral means of getting new genetic material into a cell, and that DNA may take a number of different forms. Even the cloning method (pictured right) using a microscopic needle to…

Better Cells for Better Health

Since its inception 35 years ago, the biennial meeting of the European Society for Animal Cell Technology (ESACT) has built on a tradition of combining basic science and applications into industrial biotechnology to become the international reference event in its subject matter. Every other year, this gathering of academics and industry professionals features a famously exciting social program and an extensive vendor/supplier exhibition specific to animal cell technology. ESACT meetings are much-anticipated international venues for information exchange, inspiration, networking, and…

Amplifying the Possibilities

Polymerases are natural enzymes that are vital to nucleic acid synthesis: DNA polymerase for replication of deoxyribonucleic acid and RNA polymerase for replication of ribonucleic acid. Thus all living things make and use polymerases of their own. But in 1969, the University of Wisconsin’s Thomas D. Brock and Hudson Freeze identified a new species of extremophilic bacterium thriving at 160 °F (70 °C) in a hot spring in Yellowstone National Park. In time, heat-tolerant polymerase isolated from Thermus aquaticus (Taq)…

A Powerful Pairing

Biological product and process characterization are not new to this quality by design (QbD) and process analytical technology (PAT) era. In the 1990s we saw the FDA introduce the concept of well-characterized biologics: an acknowledgment that analytical technology had advanced to the point where the bioprocess did not necessarily (or not fully, anyway) define a biopharmaceutical product. That ultimately led to the regulation of some types of products within the United States moving from the purview of FDA’s Center for…

Antibodies, Bioassays, and Cells

It’s no surprise that immunochemistry forms a broad and solid basis of biopharmaceutical analytical laboratory work. Immunochemicals include antibiotics and antigens, nucleic acids and nucleotides, enzymes, lipids, antioxidants, probes and dyes, and proteins and peptides. Available from companies such as Advanced Immunochemical, Immundiagnostik, Lampire Biological Laboratories, and Rockland Antibodies and Assays, their many uses include antibody isotyping and fragmentation. Adjuvants, buffers, assay kits, target biomolecules, and phage-display systems support those applications. Because background and off-target effects complicate the study of…

Biophysical Analysis of Living Cells

Adecades-old technology is finally emerging from clinical laboratories and demonstrating its utility in drug discovery and development. Cell therapy researchers bring their laboratory experiences with them as their science is commercialized. And as biopharmaceutical production engineers incorporate quality by design (QbD) and process analytical technology (PAT) into their work, they find that a method for monitoring the state and distribution of living cells can help build valuable upstream process knowledge. In flow cytometry, cells are suspended in fluid to flow…

Toward Nonantibody Platforms

Monoclonal antibodies (MAbs) remain the largest segment of the biopharmaceutical market, but they are not the only recombinant proteins in development. Remember that the first biopharmaceutical approved for sale was recombinant insulin — a hormone — back in the 1980s. And proteins aren’t the only recombinant biologics. The sector has expanded since then to include gene therapies and viral vectors, vaccines, and even cells and tissues. Companies around the world are developing such products for cancer, neurological, infectious disease, metabolic,…