Author Archives: Cheryl Scott

A Powerful Pairing

Biological product and process characterization are not new to this quality by design (QbD) and process analytical technology (PAT) era. In the 1990s we saw the FDA introduce the concept of well-characterized biologics: an acknowledgment that analytical technology had advanced to the point where the bioprocess did not necessarily (or not fully, anyway) define a biopharmaceutical product. That ultimately led to the regulation of some types of products within the United States moving from the purview of FDA’s Center for…

Antibodies, Bioassays, and Cells

It’s no surprise that immunochemistry forms a broad and solid basis of biopharmaceutical analytical laboratory work. Immunochemicals include antibiotics and antigens, nucleic acids and nucleotides, enzymes, lipids, antioxidants, probes and dyes, and proteins and peptides. Available from companies such as Advanced Immunochemical, Immundiagnostik, Lampire Biological Laboratories, and Rockland Antibodies and Assays, their many uses include antibody isotyping and fragmentation. Adjuvants, buffers, assay kits, target biomolecules, and phage-display systems support those applications. Because background and off-target effects complicate the study of…

Biophysical Analysis of Living Cells

Adecades-old technology is finally emerging from clinical laboratories and demonstrating its utility in drug discovery and development. Cell therapy researchers bring their laboratory experiences with them as their science is commercialized. And as biopharmaceutical production engineers incorporate quality by design (QbD) and process analytical technology (PAT) into their work, they find that a method for monitoring the state and distribution of living cells can help build valuable upstream process knowledge. In flow cytometry, cells are suspended in fluid to flow…

Toward Nonantibody Platforms

Monoclonal antibodies (MAbs) remain the largest segment of the biopharmaceutical market, but they are not the only recombinant proteins in development. Remember that the first biopharmaceutical approved for sale was recombinant insulin — a hormone — back in the 1980s. And proteins aren’t the only recombinant biologics. The sector has expanded since then to include gene therapies and viral vectors, vaccines, and even cells and tissues. Companies around the world are developing such products for cancer, neurological, infectious disease, metabolic,…

Regenerative Medicine

    The year 2011 may be seen as one in which regenerative medicine entered its adolescence. Public attention — from investors to desperate patients — finally turned toward this nascent industry with something other than skepticism or unrealistic expectations. The FDA’s approval of Dendreon’s Provenge cellular immunotherapy switched on the spotlight, and cell therapy companies suddenly faced a barrage of questions about cost, manufacturing issues, product development, and patient access. US Policy: In May 2011, US representatives Brian Bilbray…

Product Life-Cycle Planning

    Quality by design (QbD) has changed the biopharmaceutical industry’s approach to chemistry, manufacturing, and controls at its core. And that’s changing how companies plan for and execute the life cycle of their products. New candidates entering development especially benefit from strategies implemented from the start. The 2012 BioProcess International Conference and Exhibition devotes a track on Tuesday and Wednesday (9–10 October 2012) to examining those strategies in the dawning age of biosimilars: from regulatory approaches and analytical innovation…

Recovery and Purification

    Modern separation and purification engineers are hard tasked with handling concentrated feed streams, recalcitrant proteins, and new contaminant profiles coming from the use of serum-free culture media. With regulatory, public, and industry attention increasingly focused on the subject of viral safety, for example, a risk-based approach following an FDA quality systems initiative continues to build momentum. That regulatory perspective affects how recovery and purification unit operations are designed and conducted. Process modeling software is becoming increasingly sophisticated, so…

Formulation and Delivery

    Biopharmaceutical formulation and delivery are more than science; they also must take into account patient preferences and behavior, the biology of diseases being treated, and even the concerns of legal, sales, and marketing groups. But science is the foundation. Formulation work has become more methodical and quantifiable thanks to advancing analytical technologies — which brings quality by design (QbD) into formulation laboratories. The vast majority of biotherapeutics and vaccines are parenteral drugs — many of them lyophilized and…

A Decade of Processing

    About halfway through our first decade in publication, we became well acquainted with a new buzzword phrase in the biopharmaceutical industry: downstream bottleneck (1). This followed on the heels of a manufacturing capacity crunch that had been forecast shortly before BPI made its debut. Thanks to herculean efforts by upstream process and cell-line engineers, that crunch didn’t pan out. In its place, however, high-titer production moved the pressure downstream. Now separation and purification engineers were tasked with handling…

A Decade of Chromatography: A Powerful Technology Reasserts Itself

    Chromatographic separations are vital both to the analysis of biological macromolecules and to their manufacturing. When properly applied, chromatography provides exquisite specificity in separating different molecules from solution based on their size, electrical charge, or other physicochemical properties. Large liquid chromatographic (LC) columns remove host-cell nucleic acids, endotoxins, viruses, and process intermediates from harvest material. Combine high-pressure liquid chromatography (HPLC) with mass spectrometric (MS) or ultraviolet–visible (UV–vis) spectroscopic detection, and you can qualify and quantify macromolecules in such…